www.freesens.ir

FREESENS: Advanced Strip Chemistry

Advanced Enzyme

Higher accuracy by using GDH-FAD enzyme and a specific mediator **Clinical Implication:**

- Accurate results in patients with respiratory diseases or under oxygen therapy.
- Accurate results with both venous and capillary whole blood samples.
- After opening, test strips can be used up to 6 months.
- 2-year shelf-life

Minimum Interference

High substrate specificity with no interference from 61 substances **Clinical Implication:**

- Covers majority of endogenic and exogenic substance including uric acid, acetaminophen, salicylates, ascorbic acid, maltose, galactose and commonly prescribed DM and HTN medications.
- Accurate readings in patients with kidney failure, heart failure, HTN and inherited metabolic disorders like galasctosemia.

		FREESENS	Glucocard 01	
Accuracy ISO 15197:2015	BS<100 Within±15mg/dl	100%	100%	
	BS≥100 Within±15%	99.3%	96.5%	
Coding Technology		No Coding	Auto Coding	
Test Time		5 Seconds	7 Seconds	
Hematocrit Range		10-65%	35-50%	
Enzyme		GDH-FAD	GOD	
Memory Capacity		880	50	
Color Indicator		+	-	
Pre/Post Meal Indicator		+	+	
Connectivity		+(NFC)	-	
Sample Volume - (µL)		0.6	0.3	

- 1) American Diabetes Association Professional Practice, C., 7. Diabetes Technology: Standards of Medical Care in Diabetes—2022. Diabetes Care, 2021. 45(Supplement_1): p. S97-S112 2) Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive technical states.
- 3) Villena G W, et al. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors. 2019 Jan;19(4):800.

 4) Katz, L.B., et al., Meeting the New FDA Standard for Accuracy of Self-Monitoring Blood Glucose Test Systems Intended for Home Use by Lay Users. Journal of Diabetes Science and Technology, 2020. 14(5): p. 912-916.
- 5) Freckmann, G., et al., Analytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose With Focus on System Accuracy: Relevant Differences Among ISO 15197:2003, ISO 15197:2013, and Current FDA Recommendations. Journal of Diabetes Science and Technology, 2015. 9(4): p. 885-894.
- 7) Ginsberg, B.H., Factors affecting blood glucose monitoring: sources of errors in measurement. Journal of diabetes science and technology, 2009. 3(4): p. 903-913
- 8) Ginsberg BH. An analysis: to code or not to code-that is the question. J Diabetes Sci Technol. 2008 Sep;2(5):819-21. doi: 10.1177/193229680800200511. PMID:
- 9) Slingerland RJ, Muller W, Meeues JT, Van Blerk I, Gouka-Tseng C, Dollahmoersid R, Witteveen C, Vroonhof K. The quality of blood glucose meters in the Netherlands 5 years after introduction of the CE/IVD directive. Ned Tijdschr Klin Chem Labgeneesk. 2007;32:202–204.

 10) Erbach, M., et al., Interferences and limitations in blood glucose self-testing: an overview of the current knowledge. Journal of diabetes Science and Technology, 2016. 10(5): p. 1161-1168

FREE SENS Insightfully Scanned Glucose Monitoring

BEYOND STANDARDS

کد تخفیف ۴۰ درصدی: farir–۱۹۱۹

Guidelines for Approval of Glucose Monitoring Devices

FREESENS: Highly Accurate Results

	ISO 15197:2015			FDA OTC 2020	
BS Range	BS<100	BS≥100	CEG	Entire range	
Bias	±15 mg/dL	±15%	Zone A+B	±15%	±20%
Minimum Accuracy	95%	95%	99%	95%	99%
FREESENS/Easymax	100%	99.3%	100%	96.6%	99.6%

FREESENS: Cutting Edge BGM Technology

Hematocrit Correction

Applying AC voltage to the blood sample and processing the electric response signal, the system can calculate HCT and compensate the inaccuracies related to HCT variation.

Clinical Implication:

- Wide hematocrit range coverage: 10-65%
- Accurate readings in specific populations including smokers, pregnant women and neonates.

No Coding Technology

High quality enzyme purification and precise enzyme dispensing **Clinical Implication:**

- Ease of use
- Improved accuracy due to reduction in lot-to-lot variability
- Eliminating miscoding errors

Temperature Correction

Using both built-in temperature sensor and multi sensor predictive algorithm to compensate for temperature variability.

Clinical Implication:

- Accurate readings when temperature changes within the working range
- Report error codes "Ht" or "Lt" when the ambient temperature is out of the working range.

Dual Under Filling Detection

Using both the extra electrode and insufficient sample detection algorithm to ensure the elimination of all under filling related inaccuracies.

Clinical Implication:

- Accurate results in patients prone to insufficient blood sampling, such as uneducated patients, children and those with hand tremor
- Report error code "E-2" in case of insufficient blood sample volume.