iabetes in Practice Carbons شدیابترویکردکاربردی **Updates on Patient-Centered Management of Diabetes**

تازههایمدیریتبیمارمحوردیابت

Metabolic Management in Diabetes Care

Panel:

Farhad Hossein Panah; M.D. Endocrinologist

Hamidreza Aghaei Meybodi; M.D. Endocrinologist

Hengameh Abdi; M.D.
Endocrinologist

Syed Adel Jahed; M.D. Endocrinologist

When Diabetes Meets MASLD: A Metabolic Duo

Hengameh Abdi; M.D. Endocrinologist

Navigating MASLD in Type 2 Diabetes

Clinical Case Scenario

55 y/o female, T2DM 10 years ago, First time visit in your clinic for her diabetes control.

PMHx:

Dyslipidemia for 10 years, HTN for 5 years

FHx:

- T2DM in first-degree relatives
- No family history of premature CAD

SHx:

- Sedentary lifestyle
- Non-Smoker
- Non-drinker

Daily medications:

- Metformin/Linagliptin 500/2.5 mg BD
- Gliclazide MR 30 mg QD
- Atorvastatin 20 mg QD
- Losartan 50 mg QD

Clinical Case Scenario

55 y/o female, T2DM 10 years ago, First time visit in your clinic for her diabetes control.

Physical examination:

Unremarkable

Office BP: 140/90 mm/Hg

BMI: 27 kg/m²

Paraclinical Data:

ECG: Normal Sinus Rythm

Echocardiography report:

EF:55%, Mild LVH

Sonography:

Grade 2 fatty liver

Lab Data:

HbA1c: 8.3%

Cr: 1.1 mg/dL, **eGFR:** 56 mL/min/1.73 m²

Total Chol: 205 mg/dL

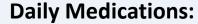
LDL: 115 mg/dL

HDL: 40 mg/dL

TG: 250 mg/dL

UACR: 20 mg/g

AST: 32 IU/L


ALT: 20 IU/L

Platelet Count: 200 10³/uL

K:5.2 mEq/L

FIB-4 score: 1.97

10-year ASCVD risk: 8.4%

Met+Lina 500/2.5 mg BD, Gliclazide 30 mg daily, Ator 20 mg QD, Losar 50 mg daily

Clinical Scenario

- F/55 y/o (postmenopause)
- T2D for 10 yr
- HTN for 5 yr
- No clinical ASCVD
- Never-smoker
- No Alcohol consumption
- Overweight (BMI: 27 kg/m²)
- Not meeting goal BP (140/90 mmHg)
- HbA1c: 8.3%
- Not meeting goal LDL-C (115 mg/dL); TG: 250 mg/dL, HDL-C: 40 mg/dL
- CKD: G3a-A1/Moderately increased risk
- FIB-4 index score: 1.97

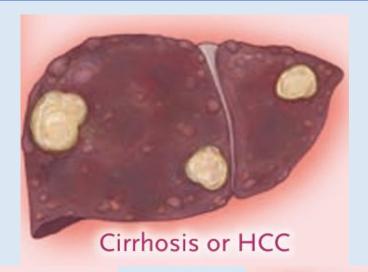
- Medications:
 - Metformin, Linagliptin, Gliclazide
 - Atorvastatin 20 mg daily
 - Losartan 50 mg daily

Metabolic dysfunction associated steatotic liver disease (MASLD)

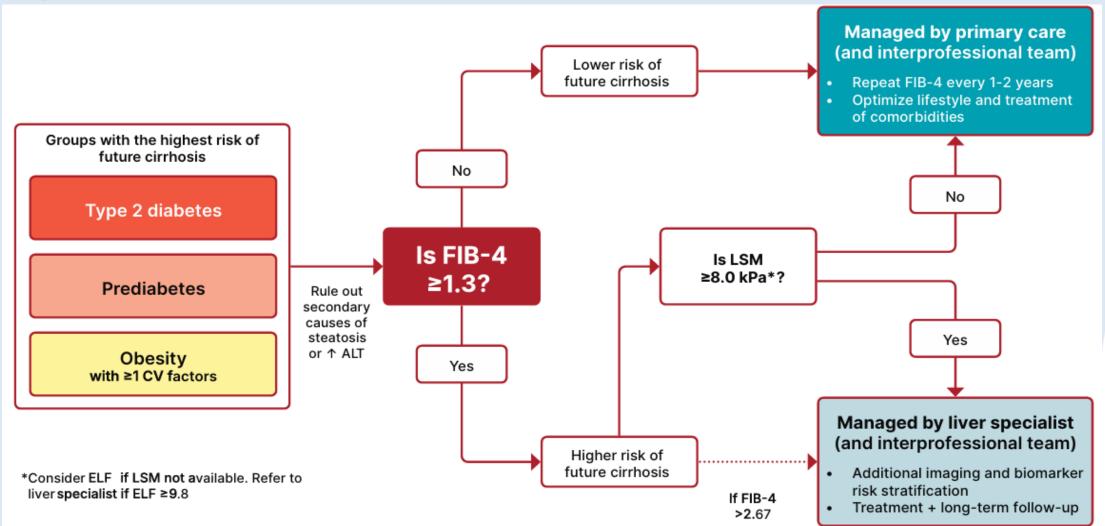
 Hepatic steatosis in conjunction with at least one cardiometabolic risk factor (traits of metabolic syndrome) in the absence of secondary causes of steatosis

WC Iran:

M & F: 90 cm


At le	east 1 out of 5:
	BMI ≥ 25 kg/m² [23 Asia] OR WC > 94 cm (M) 80 cm (F) OR ethnicity adjusted equivalent
	Fasting serum glucose ≥ 5.6 mmol/L [100 mg/dL] OR 2-hour post-load glucose levels ≥ 7.8 mmol/L [≥140 mg/dL] OR HbA1c ≥ 5.7% [39 mmol/L] OR type 2 diabetes
	Blood pressure ≥ 130/85 mmHg <mark>OR</mark> specific antihypertensive drug treatment
	Plasma triglycerides ≥ 1.70 mmol/L [150 mg/dL] OR lipid lowering treatment
	Plasma HDL-cholesterol ≤ 1.0 mmol/L [40 mg/dL] (M) and ≤ 1.3 mmol/L [50 mg/dL] (F) OR lipid lowering treatment

Clinical implications of MASLD in people with prediabetes and diabetes



Diagnostic algorithm for risk stratification and prevention of cirrhosis in individuals with MASLD

Weight loss

- Encourage calorie deficit that promotes weight loss
- ~5% weight reduction to reduce steatosis
- ~7-10% to reverse steatohepatitis and liver fibrosis

Nutrition (healthy eating)

- Emphasize a high-fiber, whole foods eating pattern with personalized goals, that is low in saturated fat and added sugar
- Individuals should abstain from sugarcontaining beverages and minimize consumption of ultraprocessed foods

Physical activity

- Discuss goal of performing ≥150 min/week moderate-intensity aerobic activity and resistance activities 2-3 times/week
- Explain that brief sessions (~10 min) can be effective ways to reach goal

Alcohol

- · Assess intake at every visit
- Recommend minimizing alcohol intake in MASLD
- Individuals should abstain if moderate fibrosis is present (≥F2)

DSMES

- Support behavior change to address factors complicating diabetes management
- Address lifestyle modification with medical nutrition therapy

Behavioral health

- Promote stress reduction via positive health behaviors
- Screen for depression and anxiety at least annually and refer to behavioral health professionals when indicated
- Advise adequate sleep and quitting smoking

Cusi K, et al. Diabetes Care 2025;48:1057-1082.

Liver effects of glucose-lowering medications

Effect in MASLD and MASH*

	Medication	Hepatic steatosis	Steatohepatitis	Fibrosis regression	Reduction of fibrosis progression
Phase 3 trial	Semaglutide**	Beneficial	Beneficial	Beneficial	Potential benefit
Phase 2 trial	Tirzepatide***†	Potential benefit	Potential benefit	Potential benefit	Potential benefit
	Pioglitazone+	Potential benefit	Potential benefit	Potential benefit	Potential benefit
	SGLT2 inhibitors	Potential benefit	?	?	?
	Metformin¶	Neutral	Neutral	Neutral	Neutral
	DPP-4 inhibitors¶	Neutral	?	?	?
	Insulin¶	Potential benefit	?	?	?
	Sulfonylureas¶	Neutral	?	?	?

Semaglutide in Metabolic-Related Steatohepatitis

A Research Summary based on Sanyal AJ et al. | 10.1056/NEJMoa2413258 | Published on April 30, 2025

ESSENCE study

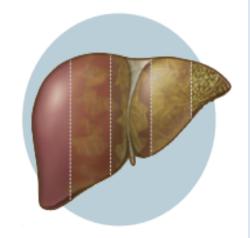
WHY WAS THE TRIAL DONE?

Metabolic dysfunction—associated steatohepatitis (MASH) is a severe form of metabolic dysfunction—associated steatotic liver disease characterized by steatosis, hepatocyte damage, and inflammation. In a previous phase 2 trial involving patients with MASH, treatment with semaglutide, a glucagonlike peptide-1 receptor agonist, resulted in better outcomes than placebo.

HOW WAS THE TRIAL CONDUCTED?

1197 adults with biopsy-defined MASH and fibrosis stage 2 or 3 were randomly assigned to receive once-weekly subcutaneous semaglutide at a dose of 2.4 mg or placebo for 240 weeks. The primary end points were the resolution of steatohepatitis with no worsening of liver fibrosis and a reduction in liver fibrosis with no worsening of steatohepatitis.

TRIAL DESIGN


- Phase 3
- · Randomized
- · Double-blind

- Placebo-controlled
- Location: 253 clinical sites in 37 countries

Patients

- 800 adults
- · Mean age, 56 years
- Women 57%; Men: 43%

BMI:

34.3±7.2 kg/m²

T2D:

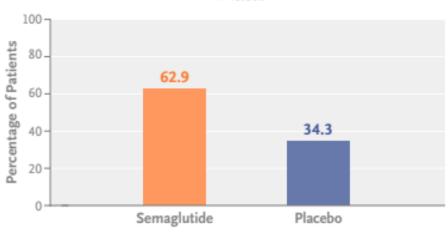
55.4%

RESULTS

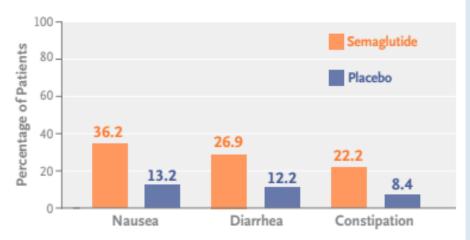
At a planned interim analysis at week 72 involving the first 800 patients, resolution of steatohepatitis with no worsening of liver fibrosis occurred in a higher percentage of patients treated with semaglutide than with placebo. Reduction in liver fibrosis with no worsening of steatohepatitis was also reported in a higher percentage of patients treated with semaglutide than with placebo. The most common adverse events in both groups were gastrointestinal disorders, including nausea, diarrhea, and constipation.

LIMITATIONS AND REMAINING QUESTIONS

- More than two thirds of the patients were White, which may limit the generalizability of the results.
- Data regarding biomarkers of alcohol consumption were lacking.
- Given the small number of lean patients, definitive conclusions about benefit in this population cannot be drawn.


CONCLUSIONS

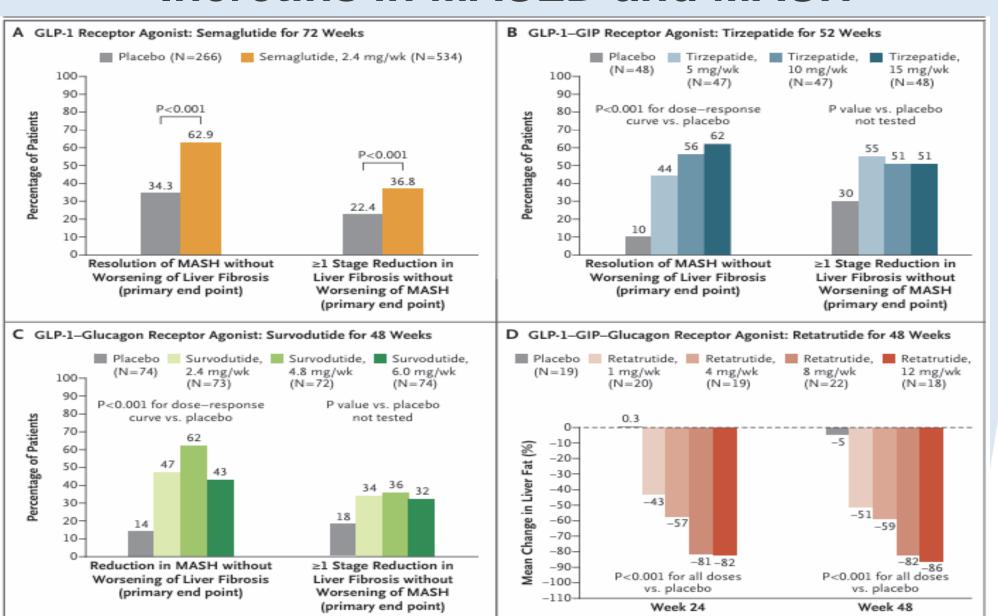
In an interim analysis of a phase 3 trial involving patients with MASH and moderate or advanced liver fibrosis, once-weekly semaglutide improved liver histologic results over 72 weeks.


NEJM QUICK TAKE | EDITORIAL

Steatohepatitis Resolution with No Worsening of Fibrosis

Estimated difference, 28.7 percentage points (95% CI, 21.1–36.2); P<0.001

Common Adverse Events



Incretins in MASLD and MASH

2024

MAESTRO-NASH

Resmetirom in Nonalcoholic steatohepatitis (NASH) with Liver Fibrosis

A Phase 3, Double-Blind, Randomized, Placebo-Controlled trial

an oral, liver-directed, thyroid hormone receptor beta selective agonist

Objective: To determine if 80 or 100 mg of Resmetirom as compared with placebo resolves NASH and/or reduces fibrosis on liver biopsy and prevents progression to cirrhosis and/or advanced liver disease.

966 Patients Inclusion criteria: Age ≥ 18 years, suspected or confirmed diagnosis of NASH fibrosis, MRI-PDFF fat fraction ≥8% and biopsy-proven NASH. Exclusion criteria: History of significant alcohol consumption for a period of more than 3 consecutive months within 1 year prior to Screening or regular use of drugs historically associated with NAFLD.

Resmetirom 100 mg:

BMI: 36.2±7.4 kg/m²

T2D: 66%

GLP-1RA use: ~13%

Resmetirom (80-mg) (n = 322)

Resmetirom (100-mg) (n = 323)

Placebo (n = 321)

Primary Outcomes

NASH resolution with no worsening of fibrosis %
Resmetirom (80-mg) vs Placebo
P<0.001

9.7

29.9

NASH resolution with no worsening of fibrosis %

Resmetirom (100-mg) vs Placebo P<0.001 9.7

NNT: 5

24.2

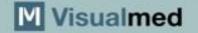
Fibrosis improvement by at least one stage with no worsening of the NAFLD activity score %

Resmetirom (80-mg) vs Placebo (P<0.001)

14.2

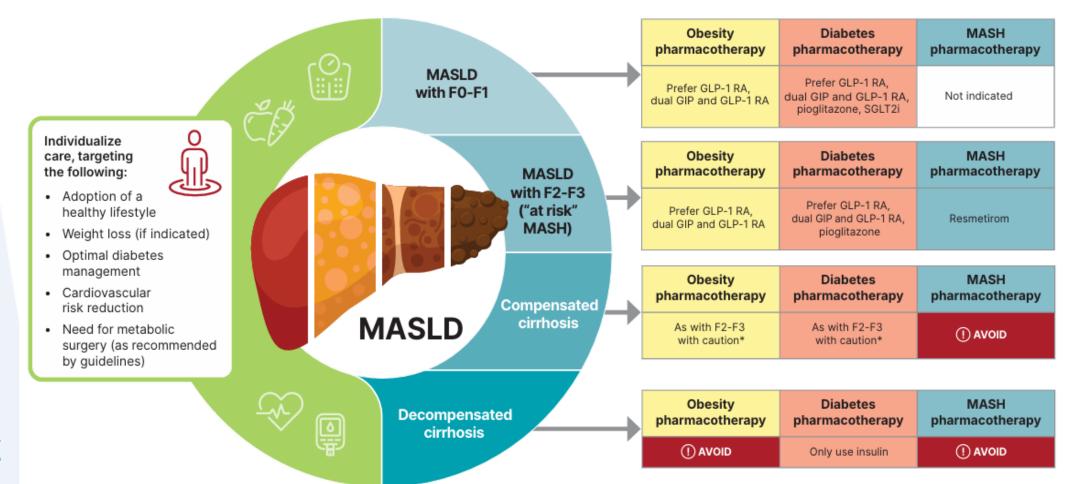
25.9

Fibrosis improvement by at least one stage with no worsening of the NAFLD activity score %


Resmetirom (100-mg) vs Placebo (P<0.001)

14.2

NNT: 8.5


Conclusion: In patients with NASH and liver fibrosis, once-daily treatment with resmetirom was superior to placebo with respect to NASH resolution and fibrosis improvement by 21 stage at 52 weeks of follow-up.

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Treatment Algorithm

Fine-tuning patient care: Tackling Residual Risk in Diabetic Kidney Disease

Syed Adel Jahed; M.D.

Endocrinologist

Clinical Case Scenario

A 60-year-old man with a 12-year history of T2DM and HTN is seen for follow-up. He reports mild ankle edema but no dyspnea or orthopnea.

PMHx:

Dyslipidemia for 12 years, HTN for 5 years

FHx:

No family history of premature CAD

SHx:

- Sedentary lifestyle
- Non-Smoker
- Non-drinker

Daily medications:

- Metformin/Empagliflozin 1000/12.5 mg Daily
- Glargine 20 units QHS
- Atorvastatin 20 mg QD
- Telmisartan/Amlodipine 80/5 mg Daily

Clinical Case Scenario

Physical examination:

Lower Limbs:

Peripheral pulses: 2+

Symmetric mild non pitting ankle edema

Office BP: 120/75 mm/Hg

HR: 76 bpm and regular

BMI: 29 kg/m²

Paraclinical Data:

ECG: Normal Sinus Rythm

Echocardiography report:

EF:55%, Mild LVH

Lab Data:

HbA1c: 7.1%

Cr: 1.8 mg/dL, eGFR: 43 mL/min/1.73 m²

Total Chol: 130 mg/dL

LDL: 70 mg/dL

HDL: 30 mg/dL

TG: 150 mg/dL

UACR: 180 mg/g

AST: 30 IU/L

ALT: 34 IU/L


Platelet: 280 10³/uL

K: 4.6 mEq/L

Na: 140 mEq/L

FIB-4 score: 1.1

10-year ASCVD risk: 16.3%

Met+Empa 1000/12.5 mg daily, Glargine 20 U QHS, Ator 20 mg QD, Telmi/Amlo 80/5 mg daily

Goals of Care

GOALS OF CARE

- **Prevent complications**
- **Optimize quality of life**

Use of Glucose-Lowering Medications in the Management of Type 2 Diabetes

HEALTHY LIFESTYLE BEHAVIORS; DIABETES SELF-MANAGEMENT

and modify treatment EDUCATION AND SUPPORT; SOCIAL DETERMINANTS OF HEALTH regularly 3-6 months) Goal: Cardiovascular and Kidney Risk Reduction in Goal: Achievement and Maintenance High-Risk Individuals with Type 2 Diabetes* of Weight and Glycemic Goals +Indicators of +HF +CKD +ASCVD' +Weight +Achievement and maintenance high CVD risk Current or prior eGFR <60 mL/min/1.73 m2 OR of glycemic goals management symptoms of HF albuminuria (ACR ≥3.0 mg/mmol with documented [30 mg/g]). Repeat measurement HFrEF or HFpEF is required to confirm CKD +ASCVD/indicators of high CVD risk* Efficacy Metformin or other agent (including GLP-1 RA* SGLT2it with for weight combination therapy) that provides SGLT2i[‡] with proven OR proven CVD +CKD (on maximally tolerated adequate EFFICACY to achieve and loss CVD benefit benefit maintain glycemic treatment goals dose of ACEi or ARB) with proven HF benefit Very high Prioritize avoidance of hypoglycemia in this population SGLT2it with primary evidence in high-risk individuals of reducing CKD progression SGLT2i can be started with High: eGFR ≥20 mL/mir/ 1.73 m² If A1C is above goal Dulaglutide. Continue until initiation of Iradiutide Efficacy for glucose lowering dialysis or transplantation Glucose-lowering efficacy is reduced Intermediate: with eGFR <45 mL/min/1.73 m² GLP-1 RA (not For individuals on a GLP-1 RA, consider adding listed above). OR SGLT2i with proven CVD benefit or vice versa SGLT2i Pioolitazone* GLP-1 RA* with proven CKD benefit Neutral Metformin, DPP-4i GLP-1 RA (not listed above), metformin, If A1C is above goal, for individuals pioglitazone, SGLT2i, sulfonylurea on SGLT2i, consider incorporating a GLP-1 RA or vice versa Intermediate: DPP-4i If additional cardiovascular and kidney risk reduction, management of other metabolic comorbidities, and/or glycemic lowering is needed If ATC is above goal or significant hypoglycemia or hyperglycemia or barriers to care are identified +Mitigating risk of MASLD or MASH Refer to DSMES to support self-efficacy in achievement of treatment goals Consider technology (e.g., diagnostic or personal CGM) to identify therapeutic gaps and tailor therapy · Identify and address SDOH that impact achievement of treatment goals Agents with potential benefit in MASLD or MASH GLP-1 RA, dual GIP and GLP-1 RA, pioglitazone, or combination of GLP-1 RA with pioglitazone

Use insulin in the setting of decompensated cirrhosis

To avoid therapeutic

inertia, reassess

Goal: Cardiovascular and Kidney Risk Reduction in High-Risk Individuals with Type 2 Diabetes*

eGFR <60 mL/min/1.73 m² OR albuminuria (ACR ≥3.0 mg/mmol [30 mg/g]). Repeat measurement is required to confirm CKD

+CKD (on maximally tolerated dose of ACEi or ARB)

SGLT2i[‡] with primary evidence of reducing CKD progression

- SGLT2i can be started with eGFR ≥20 mL/min/1.73 m²
- Continue until initiation of dialysis or transplantation
- Glucose-lowering efficacy is reduced with eGFR <45 mL/min/1.73 m²

OR

GLP-1 RA# with proven CKD benefit

If A1C is above goal, for individuals on SGLT2i, consider incorporating a GLP-1 RA or vice versa **9.13** In adults with T₂D who have CKD (with confirmed eGFR 20–

60 mL/min/1.73 m² and/or albuminuria), an SGLT₂i Of GLP-1 RA with demonstrated benefit in this population should be used for both glycemic management (irrespective of A_{1c}) and for slowing progression of CKD and reduction in cardiovascular events. The glycemic benefits of SGLT₂i are reduced at eGFR <45 mL/min/1.73 m². A

9.14 In adults with T₂D and eGFR <30 mL/min/1.73 m², a GLP-1 RA is preferred for glycemic management due to lower risk of hypoglycemia and for cardiovascular event reduction. **B**

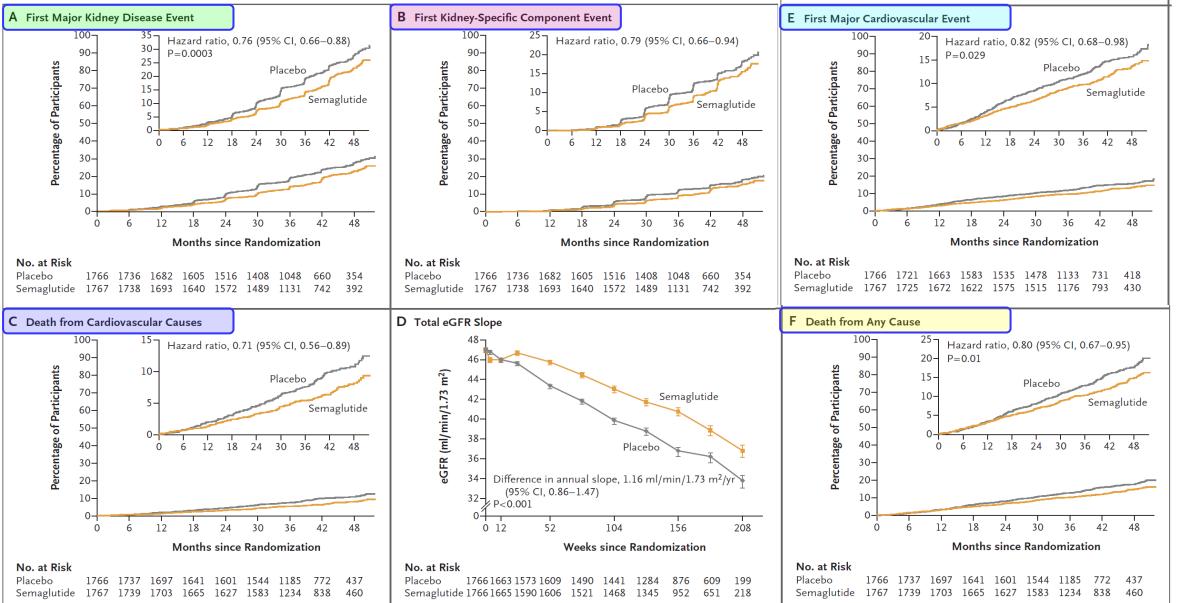
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 11, 2024

VOL. 391 NO. 2

Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes


Vlado Perkovic, M.B., B.S., Ph.D., Katherine R. Tuttle, M.D., Peter Rossing, M.D., D.M.Sc., Kenneth W. Mahaffey, M.D., Johannes F.E. Mann, M.D., George Bakris, M.D., Florian M.M. Baeres, M.D., Thomas Idorn, M.D., Ph.D., Heidrun Bosch-Traberg, M.D., Nanna Leonora Lausvig, M.Sc., and Richard Pratley, M.D., for the FLOW Trial Committees and Investigators*

T₂D and CKD

- eGFR of 50 to 75 ml/min/1.73 m2 and a UACR of >300 and <5000 mg/gr
- eGFR of 25 to <50 ml/min/1.73 m2 and a UACR of >100 and <5000 mg/gr
- Semaglutide, SC, at a dose of 1.0 mg weekly or placebo
 - 1767 semaglutide group; 1766 placebo group
 - o median follow-up: 3.4 years
- The primary outcome was major kidney disease events, a composite of
 - the onset of kidney failure (dialysis, transplantation, or an eGFR of <15 ml/min/1.73 m2)
 - o at least a 50% reduction in the eGFR from baseline
 - death from kidney-related or cardiovascular causes.
- Prespecified confirmatory secondary outcomes were tested hierarchically.

Section 11.

Chronic Kidney Disease and Risk Management

LIFESTYLE

Healthy eating

Physical activity

Smoking cessation

Weight management

Regular risk factor reassessment (every 3-6 months)

Moderate- or

high-intensity statin

FIRST-LINE DRUG **THERAPY**

SGLT2i (initiate if eGFR is ≥20; continue until dialysis or transplant)

(if eGFR is ≥30)

Metformin

RAS inhibitor at maximum tolerated dose (if albuminuria and/or HTN)

Regular reassessment of glycemia, albuminuria, BP, CVD risk, and lipids

ADDITIONAL RISK-**BASED THERAPY**

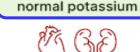
- T2D only
- All individuals (T1D and T2D)

GLP-1 RA± if needed to achieve individualized glycemic goal

Other glucose-

lowering drugs if

needed to achieve


individualized

glycemic goal

Nonsteroidal MRA+ if

ACR ≥30 mg/g and

Dihydropyridine CCB and/or diuretic* if needed to achieve individualized BP goal

Antiplatelet agent for clinical ASCVD

Ezetimibe, PCSK9i, or icosapent ethyl if indicated based on ASCVD risk and lipids

Steroidal MRA if needed for resistant hypertension if eGFR is ≥45

Treatment of patients with T2DM and CKD^a To reduce cardiovascular risk To reduce kidney failure risk Statin-based regimen ACE-I or ARB (Class I) (Class I) To reduce cardiovascular and kidney failure risk BP control SGLT2 inhibitorb **Finerenone** (Class I) (Class I) (Class I) For additional glucose control Glucose-lowering medications with suggested cardiovascular benefit GLP-I RA Glucose-lowering medications with neutral or no proven cardiovascular benefit Metformin (if eGFR >30 mL/min/1.73 m²) **DPP-4** inhibitor Insulin

Recommendations for the Treatment of Patients with T₂DM

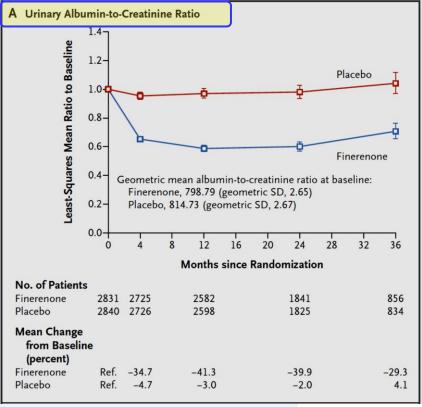
to Reduce CKD Risk¹

European Heart Journal (2023) 00, 1–98

ORIGINAL ARTICLE

Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes

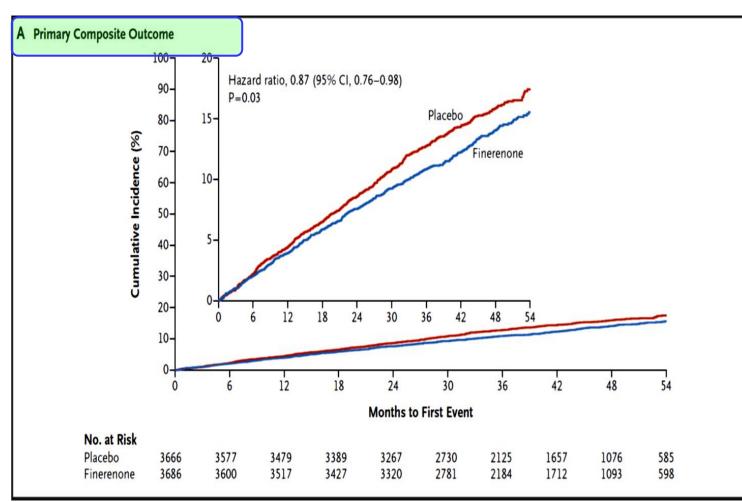
George L. Bakris, M.D., Rajiv Agarwal, M.D., Stefan D. Anker, M.D., Ph.D., Bertram Pitt, M.D., Luis M. Ruilope, M.D., Peter Rossing, M.D., Peter Kolkhof, Ph.D., Christina Nowack, M.D., Patrick Schloemer, Ph.D., Amer Joseph, M.B., B.S., and Gerasimos Filippatos, M.D., for the FIDELIO-DKD Investigators*

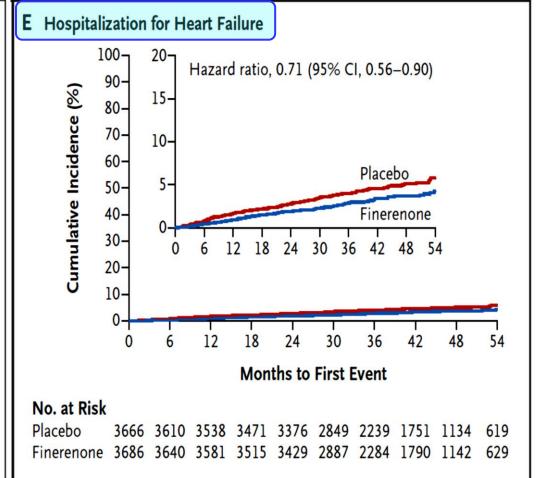

FIDELIO-DKD Trial

- 5734 patients with CKD and T₂D, in a 1:1 ratio, received finerenone or placeboe.
 - UACR of >30 and <300 mg/gr & eGFR of 25 to <60 ml/min/1.73 m2 & diabetic retinopathy
 - UACR of >300 and <5000 mg/gr & eGFR of 25 to 75 ml/min/1.73 m2 and
- A median follow-up of 2.6 years
- The primary composite outcome was:
 - kidney failure
 - a sustained decrease of at least 40% in the eGFR from baseline,
 - death from renal causes
- The key secondary composite outcome, was death from cardiovascular causes, nonfatal MI, nonfatal stroke, or hospitalization for heart failure.

FIDELIO-DKD Trial

ORIGINAL ARTICLE


Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes


B. Pitt, G. Filippatos, R. Agarwal, S.D. Anker, G.L. Bakris, P. Rossing, A. Joseph, P. Kolkhof, C. Nowack, P. Schloemer, and L.M. Ruilope, for the FIGARO-DKD Investigators*

FIGARO-DKD Trial

- 7437 patients with CKD and T₂D, in a 1:1 ratio, received finerenone or placebo.
 - UACR of >30 and <300 mg/gr & eGFR of 25 to <90 ml/min/1.73 m2
 - UACR of >300 and <5000 mg/gr & eGFR of >60 ml/min/1.73 m2
- A median follow-up of 3.4 years
- The primary composite outcome was:
 - death from cardiovascular causes
 - nonfatal MI
 - nonfatal stroke
 - hospitalization for heart failure
- The first secondary outcome was a composite of kidney failure, a sustained decrease from baseline of at least 40% in the eGFR, or death from renal causes.

FIGARO-DKD Trial

Clinical Case Scenario

My advise:

- Start Semaglutide, 0.25 mg, weekly/SC
 - Gradual decrease in Glargine dose

&

Start Finerenone, 10 mg, OD

Daily Medications:

Met+Empa 1000/12.5 mg daily, Glargine 20 U QHS, Ator 20 mg QD, Telmi/Amlo 80/5 mg daily

2